

ECOO 2013
Programming Contest

Solutions and Notes

Regional Competition (Round 2)

April 27, 2013

Sam Scott, Sheridan College (sam.scott@sheridancollege.ca)

Problem 1: Upsetris

Recommended Approach
If you try to actually simulate the “upset” process, you will get bogged down. All you really need to do is
count the number of bricks in each column. To simulate the deletion of full rows, find the column with
the smallest number of bricks and subtract this number from all columns. Then you have to remember
to output the columns in the reverse order because the board is rotated 180 degrees.

Solution to DATA11.txt

Solution to DATA12.txt

| |
| |
| |
| |
| |
| |
| |
| |
| |
| O |
| O |
| O O O |
|OOO OOOOOOO O O|
|================|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| O |
| O |
| O O O O O |
| OO O O OO O OO|
| OO OOOO OO O O OO|
|OOOOOOOOOOO OOOOOO|
|OOOOOOOOOOO OOOOOO|
|OOOOOOOOOOO OOOOOO|
|==================|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|=======|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|O |
|O O O OO OOO|
|================|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| OO|
| O O OOO|
| O O OOOOO|
| OOO OOOOO|
| OOOOOOOOO|
| OOOOOOOOO|
|==========|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| O|
| OO|
|O O OOO|
|O O OOO|
|O OO OOO|
|========|

| |
| |
| |
| |
| |
| |
| |
| |
|O O |
|OO OOOO|
|========|

| |
| |
| |
| |
| |
| OO |
| OOOO OOO O |
|===================|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| O |
| O |
| OO O O O |
| OOOO OOO O |
|OOOOOO OOOO O |
|==============|

| |
| |
| |
| |
| |
| O |
| O O O OO O O|
|==================|

Problem 2: The Walking Dead

Recommended Approach
You have the centre of each zombie’s circle and their current position. You can get the radius of the
circle by computing the distance between these two points with the Pythagorean theorem. Then you
can get the distance a zombie walks by multiplying the countdown time by its speed. The tricky part is
then figuring out where the zombie will end up.

First compute the circumference of the circle (C=2πr). Then divide the distance walked by the
circumference. This gets you a number that represents how far around the circle they went (e.g. if you
end up with 0.5 then they walked half way around the circle, which is 180 degrees or π radians).

Now translate the circle to the origin by subtracting Cx and Cy from the zombie’s position. You can figure
out the tangent of the current angle the zombie is making with the x-axis, then use arctan to get the
angle. Now add the angle they walked and use sin and cos on this new angle to get x and y coordinates
representing where they end up. Because you have translated to the origin, you have to translate back
by adding Cx and Cy to the zombie’s final position.

Once you have the final position of the zombie, round it to two decimal places and compute the
distance to the bomb. If this distance is less than or equal to the blast radius, the zombie is destroyed.

When using arctan to get the angle, your system will probably always return an angle that is between 90
and -90 degrees, which would always put the zombie in quadrant I or IV of the Cartesian plane.
Therefore, if your zombie is in quadrants II or III to the left of the y-axis (i.e. to the left of the circle
centre before translation) then you will have to add or subtract 180 degrees (π radians) to get the real
angle. Also, depending on the language you are coding in, you may have trouble with 90 degree or -90
degree angles and you might have to treat them like a special case.

The Test Cases
Although the question was very clear on when to judge that a zombie is within the blast radius, it was
decided that for the test cases every zombie should be clearly in or out. In no test case did a zombie end
up within 0.02 m of the border. Each set of test cases contains a couple of cases where there is at least
one zombie starting with the same X coordinate as its circle centre, putting it at either 90 or -90 degrees.

Solution to DATA21.txt
11
60
68
25

82
286
50
30

74
65

Solution to DATA22.txt
34
65
40
22

62
195
0
171

361
38

Problem 3: Last Robot Standing

Recommended Approach
The only way to do this is to simulate the game for each possible starting position and then keep track of
the ones that lead to a win for your robot. Use a two-dimensional array for the board but don’t forget to
re-initialize it for each run.

Keeping track of the players can be a bit tricky. You need some way to keep track of each robot’s
position (an array or set of arrays will do this) as well as where each robot is at in using its strategy. One
way to do this is by using an array that indicates the current position inside the strategy of each robot.
Another way is to represent the strategies as strings, then remove each move as you make it and
concatenate it onto the end of the string again.

The fact that robots are not removed until their next turn is not really important. It makes no difference
to the outcome of the game if you remove the robots on the turn they box themselves in or on their
next turn as long as you apply the rule consistently.

Solution to DATA31.txt
(6,4)
(1,1) (2,3) (4,5)
(3,1) (4,2)
(3,3) (4,4) (6,1) (6,5) (9,3)
(1,7) (2,8) (2,9)
(1,9) (3,3) (3,4) (5,1) (5,5) (5,9)
LOSE
(3,1)
(1,3) (5,2) (5,4) (5,6) (6,1) (6,2) (6,3)
LOSE

Solution to DATA32.txt
(4,3) (5,6) (5,7) (6,3) (6,5) (6,6) (6,7) (7,3)
(2,6)
(3,4) (5,3) (5,4) (6,2) (6,3) (6,4) (7,2) (7,7)
(2,4) (2,5) (3,4)
(2,3) (2,4) (3,4) (4,4)
(1,1) (1,3) (2,2) (2,3) (3,1) (3,2)
(1,1) (1,2)
(7,1) (8,2) (8,3)
(2,7) (4,7) (5,6)
(3,4) (3,5)

Problem 4: Breaking Rocks

The Basic Idea
The basic approach here is to generate all the possible ways to split the rock, then check each
combination to see if it works. You can use a recursive algorithm to generate all the possible splits, and
it’s a good idea to only generate the pieces in ascending order because for this problem 1 1 3 is the
same combination as 1 3 1.

For the example of a 12 kg rock split into 4 pieces, the possible splits are:

1 1 1 9, 1 1 2 8, 1 1 3 7, 1 1 4 6, 1 1 5 5, 1 2 2 7, 1 2 3 6, 1 2 4 5, 1 3 3 5, 1 3 4 4, 2 2 2 6,
2 2 3 5, 2 2 4 4, 2 3 3 4, and 3 3 3 3

Checking each combination for whether it works is where things get a bit tricky.

An Inefficient Solution
You could use a recursive backtracker to test all the possible ways to place the pieces on the balance.
Each piece could be on the left, on the right, or not on the balance at all. For each combination, the
difference between the two sides of the balance is the amount of corn you can weigh. In the example
above, there are 81 possible combinations for each set of 4 pieces. You keep track of which amounts of
corn are covered as you generate the possible combinations and a split is good if it covers all the
numbers from 1 to R.

This approach works, but the problem is that the number of combinations you might have to check
grows exponentially (3P). Depending on your code you will probably only solve some of the test cases
within 30 seconds if you use this method.

An Observation
If you start generating and testing splits for any large problem (e.g. 10 rocks and 100 kg) you might start
to see a pattern emerge. The first thing you might notice is that you always need a rock of size 1.
Without this rock, you could never weigh the quantity R-1 (where R is the size of the original rock). So
every split you generate should always start with 1, and this makes things faster.

But the bigger pattern that emerges is that the nth piece never seems to get larger than 3n-1. So a split
that starts 1 3 9 27 … could work, but a split that starts 1 3 10 29… could never work. You can use this
fact to limit the splits that you try and this might help you get one more test case before your time is up.

An Efficient Solution
But if you think more deeply about the structure of the possible splits, it could lead you to an even more
efficient solution that would be easily fast enough to complete all of the test data within 30 seconds.
Can you figure it out? Or do you have a completely different approach that works? Post your ideas to
the appropriate forum at compsci.ca!

Solution to DATA41.txt
0
2
1
12
131
1935
14384
78027
355183
1430193

Solution to DATA42.txt
3
11
45
52
108
2014
15063
82928
379105
1335694

	ECOO 2013
	Programming Contest
	Solutions and Notes
	Recommended Approach
	Solution to DATA11.txt
	Solution to DATA12.txt
	Recommended Approach
	The Test Cases
	Solution to DATA21.txt
	Solution to DATA22.txt
	Recommended Approach
	Solution to DATA31.txt
	Solution to DATA32.txt
	The Basic Idea
	An Inefficient Solution
	An Observation
	An Efficient Solution
	Solution to DATA41.txt
	Solution to DATA42.txt

