

ECOO 2016
Programming Contest

Questions

Final Competition (Round 3)

May 14, 2016

Questions made possible in part through the support of the
Sheridan College Faculty of Applied Science and Technology.

(Continued on the next page)

Problem 1: Nerd Poker
Nerd Poker is a podcast where you get to listen in on a group of people playing a game of Dungeons and
Dragons. There is a lot of dice rolling in this game, using a lot of different types of dice. There are dice
with 4, 6, 8, 10, 12 and 20 sides that are regularly used to play the game. In combat and at other critical
junctures of the game, low rolls are often bad.

The Nerd Poker players are superstitious, so before entering combat they take their dice and “roll out
the ones”. They start with their 20 sided dice, then do their 12 sided, 10 sided, etc. They roll all the dice
of the same type at once, set aside any that show a 1, then roll the remaining dice, set aside the 1’s
again, and continue this process until they have rolled a 1 on every die.

For example, Brian has 3 four-sided dice. On the first roll, they show a 1, a 3 and a 3, so he sets aside the
1 and rolls the other two again. This time he gets a 1 and a 4, so he sets aside the 1 and continues to roll
the last die. It takes him 3 more rolls before he gets a 1, for a total of 5 rolls. But how many rolls should
Brian expect to have to make? Or to put it another way, if Brian rolled out the ones on his 3 four-sided
dice an arbitrarily large number of times, what would be the average number of rolls required?

DATA11.txt (DATA12.txt for the second try) will contain 10 test cases. Each test case consists of a single
line with 2 positive integers 𝑁𝑁 and 𝑆𝑆 where 𝑁𝑁 is the number of dice and 𝑆𝑆 is the number of sides on each
die (1 ≤ 𝑁𝑁 × 𝑆𝑆 ≤ 500). Your job is to output a line containing a single integer for each test case,
representing the expected number of rolls required to roll out all the 1’s. Your answers should always be
rounded up.

Note that the sample input below contains only 3 test cases but the data files will contain 10.

Sample Input
1 20
125 4
25 20

Sample Output
20
20
75

Question Development Team
Sam Scott (Sheridan College)
Kevin Forest (Sheridan College)
Stella Lau (University of Cambridge)
Reyno Tilikaynen (University of Waterloo)
David Stermole (ECOO-CS President)
John Ketelaars (ECOO-CS Communications)

(Continued on the next page)

Problem 2: Target Practice
You wake up to find yourself in an airless, frictionless, gravity-less arena armed with an object that
bounces perfectly off any surface. Targets are appearing at one end of the room and you have to hit as
many as you can. You can throw the ball directly at a target, or bounce it off the side walls before hitting
the target. But it doesn’t count if you hit the wall behind the target before hitting the target.

The diagram below shows three different attempts to hit a target. Two of them are hits and one of them
(the dashed line) is a miss. The ball always bounces perfectly, which means the angle with which it hits
the wall is the same as the angle with which it leaves the wall (one example is shown as 𝛼𝛼 on the
diagram) and it never loses any speed on a bounce.

For specifying locations and speeds, you can consider the arena to be on a Cartesian plane with the
origin at the bottom left corner. You can treat the target and walls of the arena as line segments and the
ball as a point on the plane.

DATA21.txt (DATA22.txt for the second try) will contain 10 test cases. Each test case consists of 6 lines.
The first line contains 6 integers 𝐴𝐴𝑤𝑤 ,𝐴𝐴ℎ ,𝐵𝐵𝑥𝑥 ,𝐵𝐵𝑦𝑦, 𝑆𝑆𝑥𝑥,𝑆𝑆𝑦𝑦 separated by spaces. These integers represent an
arena and a single throw of the ball. 𝐴𝐴𝑤𝑤 and 𝐴𝐴ℎ represent the width and height of the arena
(100 ≤ 𝐴𝐴𝑤𝑤 ,𝐴𝐴ℎ ≤ 1000), 𝐵𝐵𝑥𝑥 and 𝐵𝐵𝑦𝑦 represent the initial position of the ball you are throwing
(1 ≤ 𝐵𝐵𝑥𝑥 ≤ 𝐴𝐴𝑤𝑤/2 and 1 ≤ 𝐵𝐵𝑦𝑦 ≤ 𝐴𝐴ℎ/2), and 𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑦𝑦 represent the X and Y components of the speed
with which you are throwing the ball (0 ≤ 𝑆𝑆𝑥𝑥 ≤ 100 and −1000 ≤ 𝑆𝑆𝑦𝑦 ≤ 1000). The next 5 lines each
contain 3 integers 𝑇𝑇ℎ,𝑇𝑇𝑥𝑥 ,𝑇𝑇𝑦𝑦 separated by spaces. Each set of integers represents a possible target. 𝑇𝑇𝑥𝑥
and 𝑇𝑇𝑦𝑦 represent the location of the top of the target and 𝑇𝑇ℎ represents its height (1 ≤ 𝑇𝑇ℎ ≤ 𝐴𝐴ℎ/4 and
𝐵𝐵𝑥𝑥 + 1 ≤ 𝑇𝑇𝑥𝑥 ≤ 𝐴𝐴𝑤𝑤 − 2 and 𝐴𝐴ℎ/4 ≤ 𝑇𝑇𝑦𝑦 ≤ 3𝐴𝐴ℎ/4). For each test case, your program should output a
single line containing an H or M character for each of the five targets in the order they appear. Output
an H if the ball would hit the target or M if it would miss.

Note that the sample data below contains only 2 test cases, but the data files will contain 10 each.

Sample Input
116 178 53 41 7 16
54 101 73
32 64 128
13 62 119
57 55 98
44 74 54
137 122 11 24 7 16

47 123 78
51 130 85
56 29 30
23 79 67
32 39 66

Sample Output
MMMHM
HHMHM

𝛼𝛼 𝛼𝛼

(Continued on the next page)

Problem 3: CamelCase
Many programmers use CamelCase when naming variables, functions, classes and other entities. In
CamelCase, when a name consists of multiple words concatenated together (such as
“myawesomevariablename”), the first letter of every distinct word is capitalized. In Upper CamelCase,
all words are capitalized (“MyAwesomeVariableName”). In Lower CamelCase the first word is not
capitalized but the others are (“myAwesomeVariableName”). Sometimes there is more than one way to
turn a string of letters into CamelCase.

DATA31.txt (DATA32.txt for the second try) will contain a dictionary, followed by 10 test cases. The
dictionary starts with an integer 𝑁𝑁 (where 1 ≤ 𝑁𝑁 ≤ 200000) followed by 𝑁𝑁 lines, each containing a
word. A word consists of a string of lowercase English letters. Each of the 10 lines following the
dictionary will contain a single test case. Each test case consists of a string of lowercase English letters of
length 2000 or less, created by concatenating words from the dictionary. Your program should output
10 integers, one per line, representing the minimum number of capitalizations required to convert each
test word to Lower CamelCase, so that it can be read as a string of legal words from the dictionary.

Note that the sample input below contains only 4 test cases, but the real data files will contain 10.

Sample Input
26
aid
all
app
apple
brown
come
country
crab
crabapple
dogs
for
fox
good
is
jumps
lazy
men

now
of
orchard
over
quick
the
their
time
to
apple
appleorchard
crabapple
thequickbrownfoxjumpsoverthelazydogs

Sample Output
0
1
0
8

(Continued on the next page)

Problem 4: Cuthbert’s Calculator
Your friend Cuthbert has a broken calculator. When it was working properly, it had buttons for all 10
decimal digits (0 through 9), plus three binary operators (+,−,×), two unary operators (+/−, and 𝑥𝑥2),
two memory functions (store and recall) and a clear button. Binary operators require two operands to
produce an answer (e.g. 12 + 4 = 16). Unary operators require only one operand: the +/− button
changes the sign of the number on the screen and displays the result; the 𝑥𝑥2 button squares the number
on the screen and displays the result. The calculator cannot display more than 8 digits.

A diagram that describes the basic operation of Cuthbert’s calculator is shown below. The calculator
starts in the EMPTY state with “0” showing on the screen. When the user presses a key, if it is a digit key,
the calculator moves to the GET1 state. If it’s a binary operator (+,−,×), it goes to the PENDING state. If
it’s a unary operator (+/−, 𝑥𝑥2) it goes to the WAIT state. In addition, there are actions the calculator
takes on each state transition. For example, if the user presses a unary operator key while the calculator
is in the GET2 state, the calculator performs the apply_unary, apply_binary and store_screen operations,
in that order, and then moves into the WAIT state. A table that explains these operations is shown on
the next page.

(Continued on the next page)

OPERATION DESCRIPTION

replace Replace the contents of the screen with the digit just pressed.

append Add the digit just pressed to the right of the screen.

store_screen Store the contents of the screen in an internal register (X) for later use. If there is
already something in X, it will be replaced.

store_operator Store the operator just pressed in an internal register (OP) for later use. If there is
already something in OP, it will be replaced.

apply_unary Apply the unary operator to the value currently showing on the screen, and update
the screen to show the result.

apply_binary Perform the operation in the OP register using the value in the X register as the left
operand and the value currently on the screen as the right operand, then put the
result on the screen. For example if X = 45, OP = "–" and 23 is showing on the screen,
perform 45 – 23 and put the result (68) on the screen.

The calculator also has two memory buttons MS and MR. The MS button will store the value currently
on the screen in a memory register (M). The MR button will copy the value from M to the screen. The
MS button does not change the state of the calculator. The MR moves the calculator to GET1 from
EMPTY or WAIT and to GET2 from PENDING. Otherwise, it does not change the state.

Finally, there is an AC button which clears the screen to “0” and changes the calculator state to EMPTY.

Unfortunately, the calculator is broken. Only some of the buttons are working at the moment.

DATA41.txt (DATA42.txt for the second try) will contain 10 test cases. Each test case will consist of two
lines. The first line contains the available buttons (some combination of 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +,−,∗,𝑛𝑛,
and 𝑠𝑠 separated by spaces, where n means negation and s means square. The 𝑎𝑎𝑎𝑎, 𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚 buttons
will always be available so they will not be listed). The second line contains an integer 𝑁𝑁 that can be
produced on the screen using only the available buttons (where 1 ≤ 𝑁𝑁 ≤ 1000) . Your job is to output a
sequence of the available keys (in lowercase) such that when all the keys have been pressed in the order
you specify, the integer 𝑁𝑁 will be shown on the screen.

SPECIAL NOTES:
1. Your output needs to go to a file named OUTPUT41.txt (OUTPUT42.txt for the second try) and

will be scored by an automated judging program.
2. The solutions shown below are not the only possible solutions.
3. The sample input below contains only 3 test cases but the input files will contain 10.

Sample Input
012345+-*sn
53
456*-s

78
94s-n
101

Sample Output
5 3
5 4 4 - 4 6 6 *
9 - 4 s ms 9 4 - mr -

(Continued on the next page)

Further Information
Here is a table to help explain the solution to the final sample input above:

INPUT

STATE

STORED
SCREEN

STORED
OPERATOR

MEMORY

SCREEN

 EMPTY 0

9 GET1 9

– PENDING 9 – 9

4 GET2 9 – 4

S WAIT -7 – -7

MS WAIT -7 – -7 -7

9 GET1 -7 – -7 9

4 GET1 -7 – -7 94

– PENDING 94 – -7 94

MR GET2 94 – -7 -7

– PENDING 101 – -7 101

(Continued on the next page)

	ECOO 2016
	Programming Contest
	Questions
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Further Information

