
 
 

 

 

 

ECOO 2016 
Programming Contest 

Questions 
 

Regional Competition (Round 2) 

April 30, 2016 

 

 
Questions made possible in part through the support of the 
Sheridan College Faculty of Applied Science and Technology. 



 
 

Problem 1: Palindrome Panic 
A palindrome is a word that has the exact same sequence of letters whether you read it left to right or 
right to left. The words “noon” and “radar” are palindromes. The words “noob” and “palindrome” are 
not. 

Patty loves palindromes. She finds them soothing. Patty knows that you can turn any word into a 
palindrome by adding letters to the left and/or the right. For example, you can turn “ECOO” into 
“OOCECOO” or “ECOOCE” or even “DOOCECOOD”. Patty loves palindromes so much that any time she 
sees a word written down somewhere, she immediately converts it to a palindrome in her head.  

DATA11.txt (DATA12.txt for the second try) will contain 10 test cases. Each test case consists of a single 
line containing a string of lowercase letters of maximum length 1 000 000. Your code should output the 
minimum number of letters Patty would need to add to the left and/or the right in order to convert the 
string to a palindrome. 

Note that the sample input below contains only 3 test cases but the data files will contain 10. 

Sample Input 
ecoo 
impala 
anagram 

Sample Output 
2 
3 
4 

  

Question Development Team  
Sam Scott (Sheridan College)  
Kevin Forest (Sheridan College) 
Stella Lau (University of Cambridge) 
Reyno Tilikaynen (University of Waterloo) 
John Ketelaars (ECOO-CS Communications) 
David Stermole (ECOO-CS President) 



 
 

Problem 2: CC+ 
CC+ is a cyclical cypher. A cyclical cypher is a method of encrypting messages in which every letter in a 
message is “rotated” some number of positions. For example, if the letters are rotated 1 position then 
'a' becomes 'b', 'b' becomes 'c', and so on ('z' becomes 'a'). 

In a CC+ encryption (Cyclical Cypher Plus) the number of positions a given letter is rotated is based on an 
integer key value plus the sum of the letters to the right (where a = 0, b = 1, etc.). Messages to be 
encrypted by CC+ must only contain lowercase letters and space characters. No uppercase, digits, 
punctuation or other types of characters are allowed. Spaces in the original message are removed in the 
encrypted version. 

Before the letters get rotated, special encoding characters are added to the left of the message string. 
The first two characters represent the number of words in the message as a base 26 number, using 
lowercase letters (a = 0, b = 1, etc.). For example, if there are 5 words, then these letters are 'af', which 
converts to 05. If there are 28 words, then the letters are 'bc', which converts to 12, the base-26 
equivalent of the decimal number 28. This is followed by a string of characters, each of which represents 
the length of one of the words in the message (in the order they appeared). 

Here’s an example encoding using key 5: 

 Message:  put the lime in the coconut  

 Step 1:  agddecdh put the lime in the coconut 

 Step 2:   bbvspljgzkqxextiaokcpwpljvtfsy 

DATA21.txt (DATA22.txt for the second try) will contain 10 test cases. Each test case will consist of two 
lines. The first line contains an integer 𝐾𝐾 (1 ≤ 𝐾𝐾 ≤ 2 000 000 000) and the second contains an 
encrypted or unencrypted message. Each message contains between 2 and 675 words, each from 1 to 
25 characters in length. Words in unencrypted messages are separated by a single space character. Your 
program should either encode or decode each message (as appropriate) using key 𝐾𝐾 and output the 
result on a single line. 

Note that the sample input below consists of only two test cases, but the data files will contain 10. 

Sample Input 
5 
put the lime in the coconut 
13 
ccxupnkiivspyqdtlsshwc 

Sample Output 
1. bbvspljgzkqxextiaokcpwpljvtfsy 
2. and drink it all up 



 
 

Problem 3: BattleShip 
In a popular mobile app, two friends can play a game of battleship against one 
another. In this version of battleship, each player has a grid of squares in 
which they can place their ships vertically or horizontally. Each ship takes up a 
vertical or horizontal row of grid squares equal to its length. For example, on 
the board shown at right, the player has placed two ships of length 2 and one 
each of lengths 3 and 4. 

The rules of the app state that you are not allowed to place ships adjacent to 
one another. This means that two squares occupied by different ships must not share a side or a corner. 

The players can’t see their opponent’s arrangement of ships. They take turns 
to fire torpedoes blindly into their opponent’s grid. Each torpedo hits one grid 
square. If there is a ship covering that square, it’s a hit. If not, it’s a miss. The 
game is over when one player has hit every grid square covered by an 
opponent’s ship.  

The board at left shows the other player’s view of the board shown above, 
after 6 shots have been fired. Note that all this player knows is where she has 
scored hits (h) and misses (m). 

In this version of the game, your opponent does not tell you when you have finished hitting a ship. In the 
example above, one of the length 2 ships is finished but the player firing shots won’t know she’s finished 
with it until she fires a torpedo into the grid square to the right of it and misses. 

DATA31.txt (DATA32.txt for the second try) will contain 10 test cases. The first line of each test case will 
contain two integers 𝑆𝑆 and 𝑊𝑊, where 𝑆𝑆 is the size of the board (1 ≤ 𝑆𝑆 ≤ 100) and W is the width of a 
boat (1 ≤ 𝑊𝑊 ≤ 𝑆𝑆). The next 𝑆𝑆 lines will contain 𝑆𝑆 characters each, representing the hits and misses to 
the opponent’s ships, represented by lowercase h and m characters. All other grid squares will be filled 
with a . character (ASCII 46). You must output a single line containing an integer, representing the 
number of possible (and known) locations for a ship of width 𝑊𝑊 given the hits and misses so far. 

Note that the sample input below contains only 1 test case, but the data files will contain 10. 

Sample Input 
5 3 
..... 
.hm.. 
..... 
..... 
..... 

Sample Output 
14 

     

     

     

     

     

 

h     
h     
 m h h  
     
 m    

 



 
 

Problem 4: Hop, Skip and Jump 
Hop, Skip and Jump are brothers seeking valuable items (the Cup, the Flag and the Treasure) in a 2D 
world of ladders and platforms. Their world is a grid of characters and each location on the grid is one of 
three possible types: a platform (the = character), a ladder (the # character) or clear (the . character). A 
brother can never occupy a location that has a platform in it, but he can occupy any location that is clear 
or contains a ladder. A brother can also stand in the location immediately above a platform or a ladder, 
as long as the location they are occupying is clear or contains a ladder.  

Basic Movement Rules 
All three brothers are affected by gravity. A brother is falling if he is currently on a clear location and the 
location beneath him is also clear. A falling brother always moves down until the location below him 
contains a platform or a ladder. A brother can fall an infinite distance without getting hurt. All three 
brothers can move one spot left or right, as long as they are not falling and as long as the location they 
are moving to does not contain a platform. All three brothers can climb up as long as their current 
location contains a ladder and the location above them does not contain a platform. All three brothers 
can climb down if the space they are occupying contains a ladder and the space below them does not 
contain a platform. All three brothers can also climb down if the space below them contains a ladder 
and they are not falling.  

Here are some examples (h = Hop, s = Skip, j = Jump): 

 a       b       c 
 
 
In example a, Hop can move left or right. In example b, Skip can move right but not left. In example c, 
Jump can’t move left or right because he is falling. 

 d       e       f       g 
 
 
 
In example d, if Hop’s location contains a ladder, he can climb up or down, otherwise he can only climb 
down. In example e, if Skip’s location contains a ladder, he can climb up or down, otherwise he can only 
climb down. In example f, if Jump’s location contains a ladder, he can climb up or down, otherwise he is 
falling. In example g, Hop can only climb down regardless of whether or not his location contains a 
ladder. 

Special Moves for Hop 
As long as he isn’t falling, Hop can hop up to the left or right. A hop moves Hop to a target location one 
spot sideways (left or right) and one spot up, provided the location immediately above Hop and the 
target location are both not a platform. Hop can also hop straight up (as long as he’s not falling) 
provided the location above him isn’t occupied by a platform.  

#h. 
=== 

=s. 
=#. 

.j.  
=.# 

.#. 

.h. 

.#. 

=.. 
=s= 
=#= 

.#. 

.j. 

... 

=== 
.h. 
.#. 



 
 

Here are some examples: 

 a       b       c       d 
 
     
   
In example a, Hop can hop up, left and right. In example b, Hop can hop up and right but not left. In 
example c, Hop cannot hop in any direction. In example d, Hop can hop up, left and right. 

Special Moves for Skip 
As long as he isn’t falling, Skip can skip to the left or right. A skip moves Skip to a target location two 
spots sideways (left or right), provided the target location and the intervening location are both not 
occupied by a platform. 

Here are some examples: 

 a       b       c       d 
 
 

In example a, Skip can skip left or right. In example b, Skip can skip right but not left. In example c, Skip 
can skip left but not right. In example d, if Skip’s location contains a ladder, he can skip left and right, 
otherwise he is falling. 

Special Moves for Jump 
Jump can Hop and Skip just like his brothers. As long as he isn’t falling, Jump can also jump to the left or 
right using a long jump or a high jump and he can jump up with a spring jump. A long jump moves Jump 
to a target location three spots sideways (left or right), provided the target location and the intervening 
locations are all not occupied by platforms. A high jump moves Jump to a target location that is two 
spots sideways (left or right) and one spot up, provided the location beside Jump (in the direction of his 
jump), the location above Jump, the location above the location beside Jump, and the target location 
are all not occupied by platforms. Finally a spring jump moves Jump two spots up, provided the target 
location and the intervening location are both not occupied by a platform. 

Here are some examples: 

 a        b        c        d 
 
 
 

In example a, Jump can long jump left and right, can high jump right but not left, and can spring jump. In 
example b, Jump can’t long jump at all and can’t high jump right, but can high jump left or spring jump. 
In example c, if Jump’s location contains a ladder, he can long jump right and can spring jump but he 
can’t long jump left or high jump in either direction. If Jump’s location is clear in example c, then he’s 
falling. In example d, Jump can long jump and high jump in both directions, but cannot spring jump. 

#.. 
.h= 
==. 

=#. 
.h= 
=== 

.=. 
=h= 
=== 

.#. 

.h. 

.=. 

==... 
..S.. 
=.=.= 

..=.# 

.=S## 

..=.. 

..... 

..S.= 

..#.= 

..... 

..S.. 
=...# 

....... 
===#.#. 
...J... 
=..=..# 

...#... 

....=.. 

.=.J.=. 

...=… 

...#... 

.....=. 

..=J... 

....... 

...=... 

....... 

...J... 

...#... 



 
 

DATA41.txt (DATA42.txt for the second try) will contain 10 test cases. The first line of each test case 
consists of two integers 𝑊𝑊 and 𝐻𝐻 (0 < 𝑊𝑊,𝐻𝐻 <  200) representing the width and height of the level. 
The next H lines of data will consist of 𝑊𝑊 characters, representing the layout of the level. The three 
brother locations will be represented by lowercase h, s and j. Initially, the brothers always occupy a 
location that is clear. The three goal locations will be represented by an uppercase C, F and T (for Cup, 
Flag and Treasure). The remaining locations will each be one of the following: a . character (ASCII 46) 
for clear, a # character (ASCII 35) for a ladder or an = character (ASCII 61) for a platform. 

For each test case you must output three lines using only capital letters. Each line should consist of the 
name of a brother, followed by a space, followed by the first letter of each goal that brother is able to 
reach from their start position using their movement rules. The output for each test case should show 
Hop first, then Skip, then Jump. The goals each brother can reach should be listed in alphabetical order 
(C, then F, then T). Note that each goal that a brother can reach could be reachable via a completely 
different path from the others. If a brother cannot reach any of the goals print only that brother’s name. 
You will be allowed 45 seconds of total execution time for all 10 test cases. 

Note that the sample input below contains only 1 test case but the data files will contain 10. For 
readability, you can display your output in groups of 3 lines separated by a blank line. 

Sample Input 
10 10 
#.......#. 
#=...#..#. 
#.==..C.#. 
..#..===#. 
#.#.....## 
..#...=.## 
.j..#...## 
.=...s...# 
=..h==T..F 
...=.==..= 

Sample Output 
HOP T 
SKIP T 
JUMP CFT 
 

 


	ECOO 2016
	Programming Contest
	Questions
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Basic Movement Rules
	Special Moves for Hop
	Special Moves for Skip
	Special Moves for Jump
	Sample Input
	Sample Output



