

ECOO 2016
Programming Contest

Questions

Local Competition (Round 1)

March 30 – April 6, 2016

Questions made possible in part through the support of the
Sheridan College Faculty of Applied Science and Technology.

Problem 1: Pass or Fail
In Ms. Echo’s ICS4U class there are 4 components that determine a student’s final grade: Tests,
Assignments, Projects and Quizzes. She changes the weights on each of these components from year to
year. Last year it was 20% tests, 20% assignments, 50% projects and 10% quizzes, but who knows what it
will be this year? To pass the course, a student has to get 50% or more on the weighted average of all
four components.

For example, last year Rosa got 98% on the tests, 85% on assignments, 76% on projects and 100% on the
quizzes. That means her mark is:

98 × 20% + 85 × 20% + 76 × 50% + 100 ×10% = 19.6 + 17 + 38 + 10 = 84.6

Ms. Echo plays hardball – she never passes a student with less than 50%, even if that student got
49.9999%. All the marks are in for this year. How many students will be passing?

DATA11.txt (DATA12.txt for the second try) will contain 10 test cases. The first line of each test case
contains four integers WT, WA, WP and WQ separated by spaces, representing the weights of the four
components (0 ≤ 𝑊𝑊𝑇𝑇 ,𝑊𝑊𝐴𝐴,𝑊𝑊𝑃𝑃 ,𝑊𝑊𝑄𝑄 ≤ 100 and 𝑊𝑊𝑇𝑇 + 𝑊𝑊𝐴𝐴 +𝑊𝑊𝑃𝑃 + 𝑊𝑊𝑄𝑄 = 100). This is followed by a line
with a single integer 𝑁𝑁 representing the number of students in the class (1 ≤ 𝑁𝑁 ≤ 35). The next 𝑁𝑁 lines
each contain four integers Ti, A i, P i and Qi, separated by spaces, representing the marks of an individual
student (out of 100) for each component (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and 0 ≤ 𝑇𝑇𝑖𝑖,𝐴𝐴𝑖𝑖 ,𝑃𝑃𝑖𝑖,𝑄𝑄𝑖𝑖 ≤ 100). Your program should
output a single integer for each test case representing the number of students who passed the course
that year.

Note that the sample data below contains only 4 test cases but the test data will contain 10.

Sample Input
72 4 8 16
7
68 89 4 93
79 5 74 49
38 89 62 41
24 96 49 56
73 32 17 55
65 37 64 73
8 99 94 80
4 85 0 11
2

57 84 70 57
81 1 85 31
88 1 3 8
6
60 76 21 84
61 86 1 61
54 49 41 78
6 38 74 83
66 39 68 72
82 16 19 16
92 8 0 0
4

66 33 93 84
14 32 68 17
72 59 43 1
47 53 69 89

Sample Output
4
1
5
2

Problem 2: Spindie
In the game of “Spindie”, players take turns spinning a spinner and rolling a die. On each turn, they spin
the spinner three times and roll the die between each pair of spins (i.e. the sequence on a single turn is:
Spin, Roll, Spin, Roll, Spin). Each spin of the spinner lands on some integer and each roll of the die results
in an integer from 1 to 6. The first spinner number is the base score. Then if a die roll is 1 through 5, the
player adds the next spinner number to their score. If they roll a 6, the next number is used to multiply
their score. The winner is the player with the highest score after a set number of rounds.

Here are some example turns of Spindie:

Spin Roll Spin Roll Spin Score

10 4 7 1 8 (10 + 7) + 8 = 25

1 3 2 6 5 (1 + 2) × 5 = 15

6 6 6 6 6 (6 × 6) × 6 = 216

DATA21.txt (DATA22.txt for the second try) will contain 10 test cases. The first line of each test case will
consist of an integer 𝑁𝑁 representing the number of integers on the spinner, where 1 ≤ 𝑁𝑁 ≤ 5000. The
next line contains the 𝑁𝑁 integers on the spinner, 𝑆𝑆1 through 𝑆𝑆𝑁𝑁, separated by spaces, where
1 ≤ 𝑆𝑆𝑖𝑖 ≤ 100. The next line will contain five target integers 𝑇𝑇1 through 𝑇𝑇5 separated by spaces, where
1 ≤ 𝑇𝑇𝑖𝑖 ≤ 1000000. For each test case, your program should output a single line consisting of 5 letters.
Each letter should represent one of the five targets (in order). If the target represents a possible score in
a single round of Spindie, then output a T. If it is not possible, output an F.

Note that the sample data below contains only 5 test cases, but the test data will contain 10.

Sample Input
5
23 74 7 64 47
128605 205 2162 2709 71346
3
26 5 11
407 962 455 21 902
4
23 75 89 24
933 484 13248 102 44640
9
23 61 77 83 12 92 1 7 65
72900 144 5704 145 6370
7
87 20 94 99 14 26 87
241956 177 749331 221 4066

Sample Output
FFTFF
TTFTF
FFTFF
FTTTF
TFTFF

2 5 1 6

2 5 6

1

2 6 5

1 2 6 5

1

1 2 6 5

Problem 3: Railway Sort
The “Railway Sort” is a sorting algorithm based on the metaphor of arranging the cars of a train into the
correct order. Your one move in a Railway Sort is to remove a “car” from the “train” by shunting it onto
a side rail, then reattach the two pieces, move the train forward and reattach the car onto the back end
of the train. The cost of such a move is proportional to the number of positions you moved the shunted
train car.

In the example at the left, car 1 is shunted out and
then reattached at the back end of the train (which
is on the left because the train in this example is
moving rightwards). The cost of this move is 2
because the car had to move 2 positions. The cost
of sorting this train into ascending order is also 2
since the car numbers are now sorted correctly. If
this sort had required more moves, the total cost
would have been the sum of the cost of each of the
moves.

DATA31.txt (DATA32.txt for the second try) will
contain 10 test cases. The first line of each test case
will consist of a single integer 𝑁𝑁 indicating the
number of cars in the train, where 1 ≤ 𝑁𝑁 ≤ 1000.
The next line will contain all of the integers from 1
to 𝑁𝑁 arranged in some random order, separated by
spaces. Each integer will appear exactly once.

For each of the 10 test cases, you must print the
minimum cost of performing a Railway Sort to
arrange the integers into ascending order.

Note that the sample data below only contains 2
test cases but the test data will contain 10.

Sample Input
5
3 5 1 4 2
10
2 4 6 8 10 1 3 5 7 9

Sample Output
12
67

Problem 4: Kayenne
The village of Kayenne is divided into a square grid. Residents build their houses where the grid lines
intersect. The location of each house is described by a pair of X and Y coordinates, where (0, 0) is the
point at the exact center of town. Each grid line is exactly the same distance from the grid lines on either
side of it. Kayenne stretches out from the center for 200 grid lines North, South, East and West.
Individuals or families who move to Kayenne are assigned a circular area in which to build their house.
This area is centered on a particular grid point and has a radius of 50. The newcomers are allowed to
build their houses on any empty grid point within that circular area (including on the circle boundary).

Some households in Kayenne are Democrat and others are Republican. New households don’t get to
choose their political affiliations. Instead, their three closest neighbours (determined by the straight line
distance between grid locations) vote on their affiliation and the newcomers must abide by the majority
decision. Of course, Democrat households always vote that newcomers should be Democrats, and
Republican households always vote that they should be Republicans. Occasionally there are ties for the
3rd closest neighbour. When this happens, all the neighbours who are the same distance as the 3rd
closest are also allowed to vote. This can result in an even number of votes, which means that the vote
can be tied. In these cases, the newcomers will be Democrats.

DATA41.txt (DATA42.txt for the second try) will contain 10 test cases. The first line of each test case will
consist of two integers 𝐶𝐶𝑥𝑥 and 𝐶𝐶𝑦𝑦, separated by a space, representing the coordinates of the center of a
newcomer’s circular building area (−150 ≤ 𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦 ≤ 150). The next 100 lines will each contain two
integers 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑦𝑦 and an uppercase letter 𝐴𝐴, separated by a space, representing the coordinates and
political affiliation of the existing houses in Kayenne (−200 ≤ 𝐻𝐻𝑥𝑥,𝐻𝐻𝑦𝑦 ≤ 200,𝐴𝐴 = “𝐷𝐷” 𝑜𝑜𝑜𝑜 “𝑅𝑅”). Your
program must output a number representing the percentage chance (rounded to one decimal place)
that a newcomer assigned to this circular building area will end up a Democratic household, assuming
they choose their building site randomly from the available sites in their area.

Note that the sample data below contains only 1 test case with 20 houses but the test data will contain
10 test cases with 100 houses each.

Sample Input
-81 83
15 -198 R
-17 89 R
197 -174 R

-67 89 D
180 -101 D
-78 -173 R
182 121 D
-129 179 R

-100 -53 D
64 -61 D

-123 -152 D
-15 -67 R
20 194 D
125 16 D
133 -28 D
19 -9 R
121 168 D
165 -39 R
-170 -3 D
-27 61 D

Sample Output
88.7

Question Development Team
Sam Scott (Sheridan College)
Kevin Forest (Sheridan College)
Stella Lau (University of Cambridge)
Greg Reid (St. Francis Xavier Secondary School, Mississauga)
Dino Baron (University of Waterloo)
John Ketelaars (ECOO-CS Communications)
David Stermole (ECOO-CS President)

	ECOO 2016
	Programming Contest
	Questions
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Sample Input
	Sample Output
	Sample Input
	Sample Output

